

Plenary Panel: Science of Groups and Teams

Perspective

Society

Disciplines/Fields

Institutes/Universities

Departments/Centers

Teams

Individuals

The Scholarly Study of Science Foundational Approaches

History and Philosophy of Science

- Decades long tradition of scholarly work examining science and medicine through historical lens
 - Examines how humanity's understanding of the natural world has changed over the centuries
 - Addresses how assumptions (e.g., about concepts or process) influence production of knowledge
 - Considers what drives fundamental shifts in how or what of science (e.g., paradigm shifts)
 - Studies the cultural, economic, and political impacts of scientific innovation

The Scholarly Study of Science Foundational Approaches

Social Studies of Science

- Studies of scientific knowledge, policy, and R&D
- Examines dynamics of science including relationship to politics, society, and culture

Science & Technology Studies

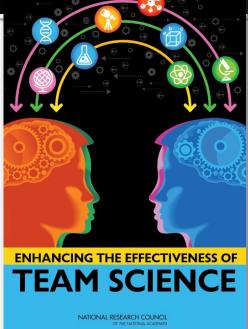
- Examines social dimensions of science and technology
- Explores the role and ethical implications of S&T in society

The Scholarly Study of Science Foundational Approaches

Scientometrics

- Measures and analyzes science, technology, and innovation
- Examines scientific impact (e.g., bibliometrics)
- Maps scientific fields

Science of Science Policy


- Relies on quantitative data and qualitative information
- Seeks to provide rigorous, quantitative basis for science policy
- Develops theory and models to guide decisions about investments in science

The Science of Team Science Why Study Teams in Science

- Science of Team Science (SciTS)
 - Exists a complementarity in our goals
 - Draws from iterative give-and-take between understanding and use
 - Must understand how to make full use of the intellectual capacity of science teams

- (1) Studying science teams to:
 - Gain fundamental understanding about the production of knowledge
 - Develop methods and models to improve the scientific enterprise
- (2) Applying what is known to improve effectiveness of science teams
 - Utilize concepts from study of other team types (e.g., team training)
 - Draw from measures and metrics of teamwork (e.g., information sharing)

The Science of Team Science *Panel: Science of Groups and Teams*

Panelists: Lindred L. Greer, John R. Hollenbeck, Dan R. Ilgen, Steve Kozlowski Moderator: Stephen M. Fiore, University of Central Florida

- Lindred L. Greer Associate Professor of Organizational Behavior at Stanford School of Business
 - Focuses on group dynamics in groups in early phases of development
 - Interested in the social dynamics surrounding power, conflict, and diversity in groups
- John R. Hollenbeck is University Distinguished Professor at MSU and Eli Broad Professor of Management at the Eli Broad Graduate School of Business Administration.
 - Studies team structure, composition and performance.
 - Interested in self-regulation and goal setting processes
- Daniel R. Ilgen is John A. Hannah Distinguished Professor Emeritus at MSU in the Departments of Psychology and Management
 - Studies work motivation and performance evaluation in organizations
 - Interested in team behavior and leadership

The Science of Team Science *Panel: Science of Groups and Teams*

Panelists: Lindred L. Greer, John R. Hollenbeck, Dan R. Ilgen, Steve Kozlowski Moderator: Stephen M. Fiore, University of Central Florida

Structure for Panel

- Part 1 Panelists research area and questions/issues for team science
- Part 2 Open the floor for Q&A and Discussion

